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Abstract—Radiation region for open guiding structures is
known to be further divided into antenna- and reactive-mode
regions, and there is no clear cutoff point defined between the two
regions. For a leaky-wave antenna, it is crucial that the antenna is
designed to operate in the antenna-mode region so as to increase
radiation efficiency, whereas in integrated circuits, the leakage
should be suppressed to avoid unwanted coupling among circuits.
Therefore, a reasonable definition of the two above-mentioned
mode regions is necessary. In this paper, we propose a simple,
but good alternative to define these two regions by means of a
new version of complex effective dielectric constant, where the
complex nature is due to leakage rather than dielectric or metal
losses, as is customary. With the new approach, the reactive-mode
region is found to be consistent with the conventional concept,
and our results are similar to those in the literature. The present
technique, however, helps in a better understanding of the results
in a much easier way. Furthermore, we find for the first time that
the attenuation constant in the deep reactive-mode region can be
divided into two separate parts, one is due to the cutoff effect,
while the other is caused by the leakage effect. Simple closed-form
expressions are derived to determine the two kinds of effects. One
can, therefore, gain some insight into the leakage effect in the
reactive-mode region. A nonradiative-guide leaky-wave antenna
is then investigated as a showcase and low radiation efficiency is
observed in the reactive-mode region.

Index Terms—Antenna mode, complex effective dielectric con-
stant, guided waves, leakage effects, nonradiative waveguide, open
structure, reactive mode.

I. INTRODUCTION

L EAKY-WAVE phenomena have been used in antenna
design for a long time [1]. With the recent emergence of

low-loss waveguiding structures, many leaky-wave antennas
based on such guides that possess a number of inherent merits
were proposed for practical applications, especially in the
millimeter-wave range [2]–[8]. To cope with the design re-
quirements of leaky-wave antennas, Oliner and his co-workers

Manuscript received June 31, 1999; revised May 23, 2000. This work
was supported by the National Science Foundation of China under Project
69871026, by the Research Grant Council of Hong Kong under the Competitive
Earmarked Research Grant Project 9040371, and by the Natural Sciences and
Engineering Research Council of Canada under a Strategic Grant Scheme.

X. Zeng and S. Xu are with the Department of Electronic Engineering and
Information Science, University of Science and Technology of China, Anhui
230026, China.

K. Wu is with the Poly-Grames Research Center and Department of Electrical
and Computer Engineering, École Polytechnique, Montréal, QC, Canada, H3C
3A7 (e-mail: wuke@grmes.polymtl.ca).

K.-M. Luk is with the Department of Electrical Engineering, City University
of Hong Kong, Hong Kong.

Publisher Item Identifier S 0018-9480(02)04044-9.

developed some useful theoretical model [9]. With the recog-
nition of power leakage from printed-type transmission lines,
such as microstrip lines, slot lines, and coplanar waveguides, the
leaky-wave phenomenon has attracted more and more attention
in connection with RF and millimeter-wave integrated circuits
(ICs). It may cause some headaches such as signal power loss
and crosstalk interference [10], [11]. Once excited, the leaky
mode radiates power into the fundamental guided-wave mode
of the background structure. This guided-wave field may then
interact with other transmission lines or circuit components,
resulting in undesirable power loss, crosstalk, and package ef-
fects, which can ruin the performance of the circuit in question
unless the leakage effects are well understood and controlled
beforehand.

More and more guiding structures have been found to be
subject to leakage in a certain frequency range. The purpose of
leakage investigation for antenna applications and ICs is, how-
ever, quite different. In the former case, the leakage is highly
desired, whereas in the latter case, the leakage is undesirable
and should be suppressed [12], [13]. Nevertheless, whether
the leakage is to be enhanced or suppressed, its characteristics
should be studied anda priori knowledge is required.

It is well known that the guidance region of higher order
modes in a microstrip-line is divided into the following three
subregions with decreasing frequency:

1) bound-mode region;
2) surface-wave region;
3) radiation-mode region [14].

Although it is made for a microstrip antenna, this distinction
is apparently also suitable for other guiding structures, except
that there exists no surface-wave region in some cases such as
the nonradiative guide (NRD-guide) [2]. Modal behavior at the
transition from bound to leaky state has already been studied
in the literature [15]. Oliner has pointed out that the mode in
the radiation region with a large attenuation constant is reactive.
Therefore, it is natural for Lin and his co-workers to divide the
radiation region further into the antenna- and reactive-mode re-
gions [16]. In [16], Lin and Sheen have also claimed that there is
no clear point to distinguish the reactive-mode region from the
antenna-mode region, as leakage exists physically in the whole
radiation region [14]. Compared to the transition from bound to
leaky states, modal properties between the current two regions
of interest have not yet been studied much. This is probably due
to the difficulty of determining a critical point to separate them,
even though a critical point is clearly defined between the bound
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and leaky regions. However, a further investigation into the two
regions is significant. The reason is twofold. First, a guiding
structure used as an antenna should operate safely in the an-
tenna-mode region so that its high radiation efficiency can be
guaranteed. Second, an IC should operate in the bound region
or in the deep reactive-mode region in order to eliminate or de-
crease the leakage effect as much as possible. Deep below cutoff
is used since, in most cases, there is no pure evanescent region
without any associated leakage.

Thus far, the transition from the reactive- to antenna-mode
region was investigated only for the microstrip-line leaky-wave
antenna [16]–[18]. In [16], Linet al.defined the reactive-mode
region as a frequency region, in which the imaginary power is
larger than the real power guided along the propagation direc-
tion. They also found that the frequency point, where the at-
tenuation constant is equal to the phase constant, is almost the
same as the point where the normalized propagating imaginary
power equals one. Nevertheless, two neat questions were not
clearly answered there, i.e., 1) why the reactive-mode region is
so defined and 2) why the frequency point where the attenua-
tion constant is equal to the phase constant is always nearly the
same point where the imaginary power is equal to the real part.
We will see later that the role of the imaginary power is essen-
tially the same as that of the attenuation constant. Also, in the
reactive-mode region, neither the attenuation constant, nor the
imaginary power alone can provide us much information about
the leakage. It is the purpose of this paper to find a simple way to
give a reasonable alternative definition of the reactive-mode re-
gion and to get more meaningful information about the leakage
in this region.

In this paper, we propose a simple, but good alternative def-
inition of the reactive-mode region by means of the concept of
a complex effective dielectric constant, where the complex na-
ture is due to leakage, not to dielectric or metal losses, as is
customary. This concept will be shown to have a number of
technical merits. First, it is very simple and also consistent with
the conventional definition of the reactive-mode region, thus it
is easy to be understood. Second, our definition based on the
complex effective dielectric constant is surprisingly consistent
with that defined in [16]. Third, the concept can give a simple
qualitative explanation to the second aforementioned question,
i.e., why the point where the attenuation constant is equal to
the phase constant is always nearly the same point where the
imaginary part of power equals the real part. Finally, the con-
cept can be used to distinguish the contributions of reactance
and of leakage to the attenuation constant in a qualitative sense.
Furthermore, the attenuation constant in the deep reactive-mode
region can even be quantitatively divided into two separate parts
considering the cutoff effect and leakage effect, respectively,
which makes it possible for us to gain some qualitative or quan-
titative knowledge of the leakage in this region.

In Section II, the concept of a complex dielectric constant is
given, and details are discussed as to define the reactive-mode
region. A qualitative information about the leakage is then
obtained and the attenuation constants due to the cutoff
and leakage effects are determined, respectively, in a closed
form for the deep reactive-mode region. Subsequently, an
NRD-guide leaky-wave antenna is considered as an example

and the approach of obtaining its complex effective dielectric
constant is briefly discussed in Section III. In Section IV, results
are described and low radiation efficiency is observed from
the leakage-related attenuation constant in the reactive-mode
region.

II. CONCEPT OF A COMPLEX EFFECTIVE

DIELECTRIC CONSTANT

Among the parameters characterizing a leaky-wave antenna,
the attenuation and phase constants are two of the most impor-
tant ones, and they must be determined accurately beforehand
either theoretically or experimentally. With the two parameters
in hand, we can easily construct the complex effective dielec-
tric constant without any further complicated calculations as fol-
lows:

(1)

Wave propagation in the-direction is assumed to follow .
This definition is obviously the same as the usual effective di-
electric constant, which is very familiar to microwave engineers.
Notation and are used herewith to denote the real and
negative imaginary parts of the complex effective dielectric con-
stant, respectively. As we know, in a conventional metallically
closed waveguide, and when above cutoff,
whereas and when below cutoff. Therefore, the
reactive region can be defined by either or .
is also greater than zero when above cutoff and less than zero
when below cutoff with always being zero. Therefore, we
can also determine the reactive region as . The stan-
dard NRD-guide operating is also above or below cutoff. In a
leaky-wave antenna, however, it is more complicated. Since
and are always positive as long as the leakage exists, the pre-
vious definition using or then becomes impracticable when
leakage exists. Furthermore, the leakage in the reactive-mode
region cannot be determined solely from the attenuation con-
stant because both the leakage and reactance contribute to the
attenuation constant. However, no such difficulties will occur if
the latter definition is used. That is to say, is still a suit-
able alternative to distinguish the antenna- and reactive-mode
regions when leakage exists. Apparently, this choice will be very
good when a small leakage is involved. We will see later that
contains the information about the leakage in the reactive-mode
region, and the cutoff effect, which contributes mainly to,
has no direct relation to in that region. In this way,
is used to separate the antenna- and reactive-mode regions in our
analysis, and is used to help us determine the leakage effect
in the reactive-mode region, which will be discussed below.

Let us consider the example of an NRD-guide leaky-wave an-
tenna, as shown in Fig. 1. First, let us begin with a standard
NRD-guide without an air gap (i.e., ), and assume that the
exponential factor along the-direction be expressed as
with . It is well known that varies from a pos-
itive real to zero, and then to a complex value having only
the imaginary part , when the eigenmode operates from
the propagation region to the cutoff region, with its trajectory
path in the complex plane described in Fig. 2(a). In parallel,
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Fig. 1. Cross-sectional view of an NRD-guide leaky-wave antenna, which is
showcased as an example for the proposed approach on the basis of the concept
of complex effective dielectric constant.

(a)

(b)

Fig. 2. Description of the modal properties in the complex plane. (a) Trajectory
path of the propagation constant when the mode operates from the guided-wave
state to the evanescent state. (b) Trajectory path ofEi–Er curves for the leaky
and nonleaky cases when the mode operates from the guided-wave state to the
evanescent state.

just varies from a positive real to zero and then to a nega-
tive real value. That means when there is no leakage, the tra-
jectory path of will never be apart from the horizontal axis
in the – diagram because, in this case, is always equal
to zero. However, when increases away from zero with suit-
ably chosen geometric parameters, the guide starts to leak power
along the transverse direction that will make the– curve
deviate from the horizontal axis, as indicated in Fig. 2(b). As
the dielectric is assumed to be lossless and the conductivity of
metallic plates is assumed to be infinite, it is obvious that the
deviation of the – curve from the horizontal axis is totally
due to the leakage effect. Therefore, we can get some qualitative
knowledge of the leakage from .

From the above discussion, it suggests that the region, where
the real part of complex effective dielectric constant is less than
zero, be a suitable alternative definition for the reactive-mode re-
gion. In the following, we will see that our definition is surpris-
ingly identical to that defined in [16], and the complex effective
dielectric constant can also help us to understand qualitatively
other aspects.

When the real part is equal to zero, we have from (1)

(2)

which yields . Hence, the critical point to
separate the reactive-mode region from the antenna-mode re-
gion, according to the current definition, is the crossing point of
the and curves, which is the same as that used in [16]. Lin
and Sheen defined in [16] the critical point as the one where the
imaginary part of the power propagating toward the propagation
direction is equal to the real part. They also pointed out that it
is almost the same as the point where the attenuation constant
is equal to the phase constant. They obtained that result after
having carried out a complicated calculation. In this study, we
find that the concept of a complex effective dielectric constant
can give a simple qualitative explanation over their concluding
remarks. It is known that along the propagation direction, the
space can be viewed as the one filled homogeneously with a
medium having a dielectric constant equal to the effective di-
electric constant. Unlike the practical complex dielectric con-
stant, the negative imaginary part of the current one is due to
the leakage instead of the dielectric loss. Therefore, the space
is uniform in the propagation direction, and its effective charac-
teristic impedance can simply be formulated by

(3)

If we do not mind whether the reactance is inductive or capaci-
tive, we can then deduce qualitatively that the ratio of the imag-
inary part of power to the real part is equal to . One can
then see that: 1) when the mode is bound ( , ), the
power transmitting toward the propagation direction is real and
there is no imaginary part and 2) when the mode goes into the
antenna-mode region,increases, and the imaginary power be-
gins to increase. Here, we should note that increasing the imag-
inary power is caused by the leakage effect instead of others,
just as the emergence ofis due to the leakage. When the mode
runs into the reactive-mode region, we can see thatincreases
rapidly, as does the imaginary power, and most of the power
is, therefore, stored, resulting in a large power reflection to the
feeding structure, as shown in [16] and [17] for microstrip line
leaky-wave antennas. The ratio of the imaginary part of power to
the real part is qualitatively depicted in Fig. 3 for both leaky and
nonleaky cases. We can now see that the role of the imaginary
power is essentially the same as that of the attenuation constant.
The attenuation constant alone cannot give much information
about the leakage in the reactive-mode region and neither can
the imaginary power.
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Fig. 3. Trajectory path of the ratio of the imaginary power to the real one for
the leaky and nonleaky cases.� for the nonleaky case (fromO toO then to
1),� for the leaky case (fromO toO toO to the reactive-mode region)
and the radiation region for the leaky case becomes a pure evanescent region for
the nonleaky case withIm(P )=Re(P ) always being1.

Also in the deep reactive-mode region (is much less than
), one can further divide the attenuation constant into two

parts using the complex effective dielectric constant; one is on
the basis of the cutoff effect, while the other is on the leakage
effect. Leakage properties in this region can be approximately
obtained as follows. From (1), we have

(4)

Since is much less than , the square root can be expanded
into a Taylor series as

c.c.

(5)

Neglecting the higher order terms leads to approximate expres-
sions for the phase and attenuation constants

(6)

(7)

with

(8)

In (8), , related to the cutoff effect, is independent of, and
, due to the leakage effect, heavily depends on. From (8),

we note that, as expected, if there is no leakage,is exactly
the same as the conventional one. The leakage effect also really
enhances the attenuation constant. From (6) to (8), we have

(9)

Since stays small and increases rapidly as we go further into
the reactive-mode region, this expression directly shows us that
the ratio becomes smaller and smaller very rapidly as we
enter further into the reactive-mode region. With (7) and (9), we
get an approximate expression foras

(10)

Considering that is much small than , (10) can be simplified
further as follows:

(11)

An approximation for the leakage contribution to the attenuation
constant is now obtained just usingand .

III. CALCULATION OF THE COMPLEX EFFECTIVE

DIELECTRIC CONSTANT

To obtain the complex effective dielectric constant, as dis-
cussed above, one should first calculate the propagation con-
stant, which is always required in the design or analysis for a
leaky-wave antenna. A number of ways are available to do so. In
our analysis, a combining method of a multimode network tech-
nique with a mode-matching method is used [19]. In Fig. 1, the
structure can be divided into an air-filled parallel-plate region
and partially dielectric-filled planar region. In each region, elec-
tric and magnetic fields are derived in terms of a superposition
of longitudinal section electric (LSE) and longitudinal section
magnetic (LSM) modes. Matching tangential fields leads to the
formulation of modal coupling parameters, and then a disper-
sion equation is obtained with the concept of transversely cas-
caded network. Finally, the complex propagation constant can
easily be obtained by solving the resulting transcendental dis-
persion equation.

IV. NUMERICAL EXAMPLES

In this section, the concept of a complex effective dielectric
constant is detailed to model characteristics of the NRD-guide
leaky-wave antenna shown in Fig. 1. Fig. 4 gives leakage prop-
erties of the antenna as the width of the dielectric slab varies for
various normalized heights of the NRD-guide strip. The dots
in Fig. 4(c) are calculated results given in [2]. Oliner has indi-
cated that a rapid increase of the attenuation constant is due to
the cutoff effect, and the nature of attenuation in the vicinity
of cutoff changes from radiative to primarily reactive. From
Fig. 4(a), we note that when , is always zero, as
there is no leakage; therefore, the curve fits exactly with the hor-
izontal axis. When is increased to 0.04, the – curve
starts to go up gradually apart from the horizontal axis, meaning
the appearance of leakage. From Fig. 4(b), one can also see
that when becomes large, the leakage effect () becomes
large; however, after reaches 0.2, it decreases. Physically
speaking, this is quite true because whenincreases to , the
guide becomes a parallel-plate guide, and there is no leakage,
as the separation of the two parallel plates is less than one-half
of the free-space wavelength. The curves ofindicate that the
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(a)

(b) (c)

Fig. 4. Parametric effects of the NRD-guide antenna geometry includingb=� on the leakage properties versust=� with a=� = 0:423 and" = 2:56.
(a)Ei–Er diagram. (b) Real and negative imaginary parts of the complex effective dielectric constant. (c) Attenuation and the phase constants.

largest leakage occurs in the case when and are close
to 0.2 and 0.55, respectively, which cannot be obtained from the
attenuation curves. Whenis fixed and is zero, the attenuation
constant is very large and it is totally due to the cutoff effect. As

increases when is fixed, the leakage appears and increases
gradually, whereas the attenuation decreases. In the vicinity of
the cutoff, the normalized phase constant changes rapidly, as
shown in Fig. 4(c), and reaches near 0.18 for when

is zero. From these figures, one can observe that, in the
vicinity of , the curves of the attenuation constant al-
ways undergo a sharp change.

Fig. 5 presents parametric variations of radiation character-
istics of the antenna as a function of the thickness of an air
gap, which was proposed for antenna application in [2], and
has been used for antenna array in [20]. When is less

than 0.16, we obtain the same attenuation constant curves as
given in [2]. A further increase of the air-gap thickness, how-
ever, makes the antenna operate below cutoff, as described in
Fig. 5(a), which generates a large attenuation constant with a
very low radiation efficiency. From the attenuation curves, it
is very hard to determine the air-gap thickness for which the
leakage gets its maximum, whereasreveals such properties.
Fig. 5(b) presents calculated results for the complex effective
dielectric constant. The curves suggest that the maximum
leakage in the case of takes place in the
vicinity of 0.15, 0.2, 0.225, respectively. Beyond that, the atten-
uation constant increases further with increasing the thickness
of the air gap, whereas the leakage reduces. In Fig. 5(c), (7) and
(8) are used to calculate the attenuation parts due to the cutoff
and leakage effects. We note from this figure that, in the deep
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(a) (b)

(c)

Fig. 5. Parametric effects oft=� on the leakage properties of the NRD-guide antenna with various values ofb=� with a=� = 0:423 and" = 2:56.
(a) Attenuation constant and the phase constant. (b) Real and negative imaginary parts of the complex effective dielectric constant. (c)� and� in the
reactive-mode region.

reactive-mode region, the attenuation caused by the leakage is
much less pronounced than that caused by the cutoff effect;
therefore, the radiation efficiency in this region is very low. As

is larger than 0.3, the attenuation caused by the leakage
is negligible for all the different . Looking into the curves
plotted in Fig. 5, we find out that using to separate the
antenna- from the reactive-mode region will help the designer
to make a leaky-wave antenna operate in the antenna-mode re-
gion with a high radiation efficiency. Although the concept of
a complex effective dielectric constant has been applied in this
paper only to the NRD-guide leaky-wave antenna, it is also ap-
plicable to many other leaky-wave structures.

V. CONCLUSION

A novel concept of a complex effective dielectric constant
has been developed and used to define the antenna- and re-
active-mode regions for open dielectric guiding structures. It
overcomes the blurry concept of an attenuation constant from
which one cannot obtain any knowledge about the leakage in
the below-cutoff region. Compared to other available techniques
in the literature, this concept has been shown to be much sim-
pler and easier. Systematic analysis has been presented with a
number of results generated from a combined numerical ap-
proach in the modeling of NRD-guide leaky-wave structures.
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Our study indicates that the proposed approach can effectively
assist the designer to make sure that a leaky-wave antenna oper-
ates in the antenna-mode region with high radiation efficiency,
and it also generates qualitative knowledge about the leakage
effect in the reactive-mode region.
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