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the Cutoff Region Using a New Version of
Complex Effective Dielectric Constant

Xiang-yin Zeng, Shan-jia XuSenior Member, IEEEKe Wu, Fellow, IEEE and Kwai-Man Luk Senior Member, IEEE

Abstract—Radiation region for open guiding structures is developed some useful theoretical model [9]. With the recog-
known to be further divided into antenna- and reactive-mode nition of power leakage from printed-type transmission lines,
regions, and there is no clear cutoff point defined between the two such as microstrip lines, slot lines, and coplanar waveguides, the
regions. For a leaky-wave antenna, it is crucial that the antenna is ' ' -
designed to operate in the antenna-mode region so as to increaséeaky'wave_ pher_womenon has_ a_lttracted morg and more z_:lttentlon
radiation efficiency, whereas in integrated circuits, the leakage IN connection with RF and millimeter-wave integrated circuits
should be suppressed to avoid unwanted coupling among circuits. (ICs). It may cause some headaches such as signal power loss
Therefore, a reasonable definition of the two above-mentioned and crosstalk interference [10], [11]. Once excited, the leaky
mode regions is necessary. In this paper, we propose a simple, o 4e radiates power into the fundamental guided-wave mode
but good alternative to define these two regions by means of a . . -
new version of complex effective dielectric constant, where the _Of the bac_kground structur_e. _'I'hlS_gUlded-V\{ave_ field may then
complex nature is due to leakage rather than dielectric or metal interact with other transmission lines or circuit components,
losses, as is customary. With the new approach, the reactive-moderesulting in undesirable power loss, crosstalk, and package ef-
region is found to be consistent with the conventional concept, fects, which can ruin the performance of the circuit in question

and our results are similar to those in the literature. The present | ,n1ass the leakage effects are well understood and controlled
technique, however, helps in a better understanding of the results beforehand

in a much easier way. Furthermore, we find for the first time that o
the attenuation constant in the deep reactive-mode region can be More and more guiding structures have been found to be
divided into two separate parts, one is due to the cutoff effect, subject to leakage in a certain frequency range. The purpose of
while thc_e otheris cagsed by the Ieakage effect._SlmpIe closed-form leakage investigation for antenna applications and ICs is, how-
expressions are derived to determine the two kinds of effects. One oo ite different. In the former case, the leakage is highly
can, therefore, gain some insight into the leakage effect in the . . . -
reactive-mode region. A nonradiative-guide leaky-wave antenna desired, whereas in the latter case, the leakage is undesirable
is then investigated as a showcase and low radiation efficiency isand should be suppressed [12], [13]. Nevertheless, whether
observed in the reactive-mode region. the leakage is to be enhanced or suppressed, its characteristics
Index Terms—Antenna mode, complex effective dielectric con- should be studied aral priori knowledge is required.
stant, guided waves, leakage effects, nonradiative waveguide, open |t is well known that the guidance region of higher order
structure, reactive mode. modes in a microstrip-line is divided into the following three
subregions with decreasing frequency:

|. INTRODUCTION 1) bound-mode region;

EAKY-WAVE phenomena have been used in antenna 2) Surface-wave region;
design for a long time [1]. With the recent emergence of 3) radiation-mode region [14].
low-loss waveguiding structures, many leaky-wave antennAlhough it is made for a microstrip antenna, this distinction
based on such guides that possess a number of inherent mé&itpparently also suitable for other guiding structures, except
were proposed for practical applications, especially in thbat there exists no surface-wave region in some cases such as
millimeter-wave range [2]-[8]. To cope with the design rethe nonradiative guide (NRD-guide) [2]. Modal behavior at the
quirements of leaky-wave antennas, Oliner and his co-workeransition from bound to leaky state has already been studied
in the literature [15]. Oliner has pointed out that the mode in
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and leaky regions. However, a further investigation into the twand the approach of obtaining its complex effective dielectric
regions is significant. The reason is twofold. First, a guidingonstant is briefly discussed in Section Ill. In Section IV, results
structure used as an antenna should operate safely in the ame- described and low radiation efficiency is observed from
tenna-mode region so that its high radiation efficiency can liee leakage-related attenuation constant in the reactive-mode
guaranteed. Second, an IC should operate in the bound regiegion.
or in the deep reactive-mode region in order to eliminate or de-
crease the leakage effect as much as possible. Deep below cutoff

is used since, in most cases, there is no pure evanescent region
without any associated leakage.

Thus far, the transition from the reactive- to antenna-modeAmong the parameters characterizing a leaky-wave antenna,
region was investigated only for the microstrip-line leaky-wawhe attenuation and phase constants are two of the most impor-
antenna [16]-[18]. In [16], Liret al. defined the reactive-mode tant ones, and they must be determined accurately beforehand
region as a frequency region, in which the imaginary power gther theoretically or experimentally. With the two parameters
larger than the real power guided along the propagation dirég-hand, we can easily construct the complex effective dielec-
tion. They also found that the frequency point, where the dtic constant without any further complicated calculations as fol-
tenuation constant is equal to the phase constant, is almostltives:
same as the point where the normalized propagating imaginary
power equals one. Nevertheless, two neat questions were not Er—jEi=(v/k)* = ((B— ja)/ko)Q. Q)
clearly answered there, i.e., 1) why the reactive-mode region is
so defined and 2) why the frequency point where the attenu&lave propagation in the-direction is assumed to follow 77~
tion constant is equal to the phase constant is always nearly Thes definition is obviously the same as the usual effective di-
same point where the imaginary power is equal to the real patectric constant, which is very familiar to microwave engineers.
We will see later that the role of the imaginary power is esseNotation Er and E: are used herewith to denote the real and
tially the same as that of the attenuation constant. Also, in thegative imaginary parts of the complex effective dielectric con-
reactive-mode region, neither the attenuation constant, nor giant, respectively. As we know, in a conventional metallically
imaginary power alone can provide us much information abocibsed waveguidex = 0 and3 > 0 when above cutoff,
the leakage. Itis the purpose of this paper to find a simple waywdereas? = 0 anda > 0 when below cutoff. Therefore, the
give a reasonable alternative definition of the reactive-mode reactive region can be defined by eiter> 0 or 5 = 0. Er
gion and to get more meaningful information about the leakaggealso greater than zero when above cutoff and less than zero
in this region. when below cutoff withZ: always being zero. Therefore, we

In this paper, we propose a simple, but good alternative defin also determine the reactive regionfas < 0. The stan-
inition of the reactive-mode region by means of the concept dard NRD-guide operating is also above or below cutoff. In a
a complex effective dielectric constant, where the complex na@aky-wave antenna, however, it is more complicated. Sihce
ture is due to leakage, not to dielectric or metal losses, asaisda are always positive as long as the leakage exists, the pre-
customary. This concept will be shown to have a number wious definition usingr or 5 then becomes impracticable when
technical merits. First, itis very simple and also consistent withakage exists. Furthermore, the leakage in the reactive-mode
the conventional definition of the reactive-mode region, thusri¢gion cannot be determined solely from the attenuation con-
is easy to be understood. Second, our definition based on #tent because both the leakage and reactance contribute to the
complex effective dielectric constant is surprisingly consisteattenuation constant. However, no such difficulties will occur if
with that defined in [16]. Third, the concept can give a simplthe latter definition is used. That is to sdy; = 0 is still a suit-
gualitative explanation to the second aforementioned questiabe alternative to distinguish the antenna- and reactive-mode
i.e., why the point where the attenuation constant is equal regions when leakage exists. Apparently, this choice will be very
the phase constant is always nearly the same point where goed when a small leakage is involved. We will see later Hyat
imaginary part of power equals the real part. Finally, the corgentains the information about the leakage in the reactive-mode
cept can be used to distinguish the contributions of reactarregiion, and the cutoff effect, which contributes mainlyAe,
and of leakage to the attenuation constant in a qualitative serfs&s no direct relation t&s in that region. In this wayEr = 0
Furthermore, the attenuation constant in the deep reactive-mlesed to separate the antenna- and reactive-mode regions in our
region can even be quantitatively divided into two separate paatsalysis, andvi is used to help us determine the leakage effect
considering the cutoff effect and leakage effect, respectiveig,the reactive-mode region, which will be discussed below.
which makes it possible for us to gain some qualitative or quan-Let us consider the example of an NRD-guide leaky-wave an-
titative knowledge of the leakage in this region. tenna, as shown in Fig. 1. First, let us begin with a standard

In Section I, the concept of a complex dielectric constant SRD-guide without an air gap (i.e.,= 0), and assume that the
given, and details are discussed as to define the reactive-mesponential factor along the-direction be expressed as’7*
region. A qualitative information about the leakage is thewith v = 5 — ja. It is well known that« varies from a pos-
obtained and the attenuation constants due to the cutibffe real 3 to zero, and then to a complex value having only
and leakage effects are determined, respectively, in a closkd imaginary part-j«, when the eigenmode operates from
form for the deep reactive-mode region. Subsequently, #re propagation region to the cutoff region, with its trajectory
NRD-guide leaky-wave antenna is considered as an exampéh in the complex plane described in Fig. 2(a). In parallel,

Il. CONCEPT OF ACOMPLEX EFFECTIVE
DIELECTRIC CONSTANT
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From the above discussion, it suggests that the region, where
the real part of complex effective dielectric constant is less than
t zero, be a suitable alternative definition for the reactive-mode re-
gion. In the following, we will see that our definition is surpris-
a ingly identical to that defined in [16], and the complex effective
dielectric constant can also help us to understand qualitatively
€ other aspects.
When the real part is equal to zero, we have from (1)

A

v

b —jEi = (8- ja)’ /K3 2

Fig. 1. Cross-sectional view of an NRD-guide leaky-wave antenna, which is

showcased as an example for the proposed approach on the basis of the co ; . - i ;
of complox effective dielectric constant WAk yieldss = a = koy/Ei/2. Hence, the critical point to
separate the reactive-mode region from the antenna-mode re-

Ty trajectory for the non-leaky case gion, according to the current definition, is the crossing point of
the 3 anda curves, which is the same as that used in [16]. Lin
‘jj and Sheen defined in [16] the critical point as the one where the
o —> imaginary part of the power propagating toward the propagation
0 B Re(y) direction is equal to the real part. They also pointed out that it

is almost the same as the point where the attenuation constant
is equal to the phase constant. They obtained that result after
having carried out a complicated calculation. In this study, we
find that the concept of a complex effective dielectric constant
can give a simple qualitative explanation over their concluding
remarks. It is known that along the propagation direction, the
(a) space can be viewed as the one filled homogeneously with a
medium having a dielectric constant equal to the effective di-
electric constant. Unlike the practical complex dielectric con-
stant, the negative imaginary part of the current one is due to
the leakage instead of the dielectric loss. Therefore, the space
is uniform in the propagation direction, and its effective charac-
teristic impedance can simply be formulated by

%
trajectory for the leaky case

Ei

trajectory for the leaky case

#o _ noko . B+ ja

Z= - _ '
co(Br — jEi)  B—ja 0B o2

3)
Er

If we do not mind whether the reactance is inductive or capaci-

tive, we can then deduce qualitatively that the ratio of the imag-
(0) inary part of power to the real part is equaldg/. One can

Fig.2. Description of the modal properties in the complex plane. (a) Trajectoifien see that: 1) when the mode is bougdx 0, « = 0), the

path of the propagation constant when the mode operates from the guided—V\@w,er transmitting toward the propagation direction is real and
state to the evanescent state. (b) Trajectory pafiiefor curves for the leaky 9 propag

and nonleaky cases when the mode operates from the guided-wave state t&hﬁée IS no 'mag'n‘?ry part and 2) when the que goes into the
evanescent state. antenna-mode region,increases, and the imaginary power be-

gins to increase. Here, we should note that increasing the imag-
+? just varies from a positive real to zero and then to a negaary power is caused by the leakage effect instead of others,
tive real value. That means when there is no leakage, the fiizst as the emergence @fis due to the leakage. When the mode
jectory path ofy? will never be apart from the horizontal axisruns into the reactive-mode region, we can seedhiatreases
in the Ei—Er diagram because, in this cade, is always equal rapidly, as does the imaginary power, and most of the power
to zero. However, whehincreases away from zero with suit-is, therefore, stored, resulting in a large power reflection to the
ably chosen geometric parameters, the guide starts to leak pofeeding structure, as shown in [16] and [17] for microstrip line
along the transverse direction that will make the-E+ curve leaky-wave antennas. The ratio of the imaginary part of power to
deviate from the horizontal axis, as indicated in Fig. 2(b). Athe real part is qualitatively depicted in Fig. 3 for both leaky and
the dielectric is assumed to be lossless and the conductivitynainleaky cases. We can now see that the role of the imaginary
metallic plates is assumed to be infinite, it is obvious that th@ower is essentially the same as that of the attenuation constant.
deviation of theFi—E'r curve from the horizontal axis is totally The attenuation constant alone cannot give much information
due to the leakage effect. Therefore, we can get some qualitatimut the leakage in the reactive-mode region and neither can
knowledge of the leakage froifi:. the imaginary power.

trajectory for the non-leaky case
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Im(PY/Re(P Sincef stays small and increases rapidly as we go further into
the reactive-mode region, this expression directly shows us that
! the ratioc,; /. becomes smaller and smaller very rapidly as we

bound regi > diati i i i i i
ey radationregion enter further into the reactive-mode region. With (7) and (9), we
i get an approximate expression foras
|
|
! antenna mode region i reactive mode region a /32 (10)
R .
//3 0 /32 +2a2
i
t
N 01 »— {’2 : Considering thaf is much small thai, (10) can be simplified
Er further as follows:
Fig. 3. Trajectory path of the ratio of the imaginary power to the real one for /32
the leaky and nonleaky case# for the nonleaky case (frof; to O then to o —. (11)
oc), » for the leaky case (from); to O, to O3 to the reactive-mode region) 2c

and the radiation region for the leaky case becomes a pure evanescent region, for . . I .
the nonleaky case withu( P)/Re( P) always beingo. At'approximation for the leakage contribution to the attenuation

constant is now obtained just usifigand .

Also in the deep reactive-mode regiafii(is much less than
|Er|), one can further divide the attenuation constant into two
parts using the complex effective dielectric constant; one is on
the basis of the cutoff effect, while the other is on the leakageTo obtain the complex effective dielectric constant, as dis-
effect. Leakage properties in this region can be approximatelyssed above, one should first calculate the propagation con-

I1l. CALCULATION OF THE COMPLEX EFFECTIVE
DIELECTRIC CONSTANT

obtained as follows. From (1), we have stant, which is always required in the design or analysis for a
leaky-wave antenna. A number of ways are available to do so. In
B — ja = ko\/Er — jEi. (4) ouranalysis, acombining method of a multimode network tech-

nigue with a mode-matching method is used [19]. In Fig. 1, the

|, the square root can be eXpandeatructure can be divided into an air-filled parallel-plate region
and partially dielectric-filled planar region. In each region, elec-
tric and magnetic fields are derived in terms of a superposition

of longitudinal section electric (LSE) and longitudinal section
magnetic (LSM) modes. Matching tangential fields leads to the
formulation of modal coupling parameters, and then a disper-
sion equation is obtained with the concept of transversely cas-
+c.c. caded network. Finally, the complex propagation constant can
easily be obtained by solving the resulting transcendental dis-

(5) persion equation.

SinceEq is much less thajE'r

into a Taylor series as
L4 L (B > 5 (Ei\*
8 \ Br 128 \ Er

1 Bi 1 [ Ei\®
Erl | = N
HIET S BT T 16 <|ET|>

VEr—jEi=—j\|Er|

Neglecting the higher order terms leads to approximate expres- IV. NUMERICAL EXAMPLES
sions for the phase and attenuation constants In this section, the concept of a complex effective dielectric
. constant is detailed to model characteristics of the NRD-guide
8 =ko Eq (6) Iea_ky—wave antenna shown in_ Fig. 1. Fig._4 give_s Ieakage_ prop-
2/ | Er| erties of the antenna as the width of the dielectric slab varies for
B2 various normalized heights of the NRD-guide strip. The dots
a =koy/|Er| <1 + —2> = .+ (7) in Fig. 4(c) are calculated results given in [2]. Oliner has indi-
8ET cated that a rapid increase of the attenuation constant is due to

the cutoff effect, and the nature of attenuation in the vicinity
of cutoff changes from radiative to primarily reactive. From
E3? Fig. 4(a), we note that whetf Ao = 0.0, Fii is always zero, as
0 W ®)  thereisno leakage; therefore, the curve fits exactly with the hor-
izontal axis. Wheri/\q is increased to 0.04, thBi—Er curve
In (8), «., related to the cutoff effect, is independentff, and  starts to go up gradually apart from the horizontal axis, meaning
ay, due to the leakage effect, heavily depend€nFrom (8), the appearance of leakage. From Fig. 4(b), one can also see
we note that, as expected, if there is no leakageis exactly thatwhent/\o becomes large, the leakage effeEtY becomes
the same as the conventional one. The leakage effect also relatge; however, aftet/ Ao reaches 0.2, it decreases. Physically
enhances the attenuation constant. From (6) to (8), we havespeaking, this is quite true because whiencreases ta, the
guide becomes a parallel-plate guide, and there is no leakage,
ap  Eé? 2 as the separation of the two parallel plates is less than one-half
«  8Er? 222 242 ©) ofthe free-space wavelength. The curve&oindicate that the

with

ae = ko | Er| ar=k
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Fig. 4. Parametric effects of the NRD-guide antenna geometry inclugihg on the leakage properties versys\, with a/X, = 0.423 ande, = 2.56.
(a) Ei—Er diagram. (b) Real and negative imaginary parts of the complex effective dielectric constant. (c) Attenuation and the phase constants.

largest leakage occurs in the case whéxy andb/ )\ are close than 0.16, we obtain the same attenuation constant curves as
to 0.2 and 0.55, respectively, which cannot be obtained from then in [2]. A further increase of the air-gap thickness, how-
attenuation curves. Whetis fixed andb is zero, the attenuation ever, makes the antenna operate below cutoff, as described in
constant is very large and it is totally due to the cutoff effect. ASig. 5(a), which generates a large attenuation constant with a
b increases when s fixed, the leakage appears and increasesry low radiation efficiency. From the attenuation curves, it
gradually, whereas the attenuation decreases. In the vicinityi@ivery hard to determine the air-gap thickness for which the
the cutoff, the normalized phase constant changes rapidly,leakage gets its maximum, wheredsreveals such properties.
shown in Fig. 4(c), and reaches near 0.18tfbt, = 0.2 when Fig. 5(b) presents calculated results for the complex effective
Er is zero. From these figures, one can observe that, in thielectric constant. Thé’i curves suggest that the maximum
vicinity of Er = 0, the curves of the attenuation constant aleakage in the case &/ Ao = 0.4,0.6,0.8 takes place in the
ways undergo a sharp change. vicinity of 0.15, 0.2, 0.225, respectively. Beyond that, the atten-
Fig. 5 presents parametric variations of radiation characteration constant increases further with increasing the thickness
istics of the antenna as a function of the thickness of an aifthe air gap, whereas the leakage reduces. In Fig. 5(c), (7) and
gap, which was proposed for antenna application in [2], aifl) are used to calculate the attenuation parts due to the cutoff
has been used for antenna array in [20]. Whéh, is less and leakage effects. We note from this figure that, in the deep
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Fig. 5. Parametric effects aff A, on the leakage properties of the NRD-guide antenna with various valugs\efwith /A, = 0.423 ande, = 2.56.
(a) Attenuation constant and the phase constant. (b) Real and negative imaginary parts of the complex effective dielectric constantd 4c) in the
reactive-mode region.

reactive-mode region, the attenuation caused by the leakage is V. CONCLUSION

much less pronounced than that caused by the cutoff effect;

therefore, the radiation efficiency in this region is very low. As A novel concept of a complex effective dielectric constant
t/ Ao is larger than 0.3, the attenuation caused by the leakaduss been developed and used to define the antenna- and re-
is negligible for all the differend/ . Looking into the curves active-mode regions for open dielectric guiding structures. It
plotted in Fig. 5, we find out that usinfj» = 0 to separate the overcomes the blurry concept of an attenuation constant from
antenna- from the reactive-mode region will help the designethich one cannot obtain any knowledge about the leakage in
to make a leaky-wave antenna operate in the antenna-modethe-below-cutoff region. Compared to other available techniques
gion with a high radiation efficiency. Although the concept oin the literature, this concept has been shown to be much sim-
a complex effective dielectric constant has been applied in tiiEer and easier. Systematic analysis has been presented with a
paper only to the NRD-guide leaky-wave antenna, it is also apamber of results generated from a combined numerical ap-
plicable to many other leaky-wave structures. proach in the modeling of NRD-guide leaky-wave structures.
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Our study indicates that the proposed approach can effectivefy9] S.J.Xu, X.Y.Zhang, K. Wu, and K. M. Luk, “Characteristics and design

assist the deS|gner to make sure that a Ieaky_wave antenna oper- consideration of leaky-wave NRD-guides for use as millimeter-wave an-
. . . . - . . tenna,”|IEEE Trans. Microwave Theory Teclvol. 46, pp. 2450-2456,

ates in the antenna-mode region with high radiation efficiency,  pgc 1998

and it also generates qualitative knowledge about the leakagen] A. A. Oliner and S. J. Xu, “A novel phased array of leaky-wave NRD

guides,” inNat. Radio Sci. Meeting DigBlacksburg, VA, June 15-19,

1987, p. 139.

effect in the reactive-mode region.
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